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Abstract
Magnetotransport through a three-dimensional quantum dot embedded in
vertical quantum wires in the presence of parallel magnetic fields is investigated
theoretically. The conductance spectra and the electron densities are calculated
by the scattering-matrix method. It is found that the characteristics of the
magnetoconductance depend strongly on the alignments between the quantum
wires and the embedded quantum dot. When the central axes of different
components are aligned, the conductance spectra are found to be characterized
by antiresonance dips at low magnetic fields and only by plateaus at high
magnetic fields. In contrast, when the central axes are misaligned, the
conductance spectra are found to be characterized by a mixture of antiresonance
dips and tunnelling peaks in the low-magnetic-field region and only by
tunnelling peaks in the high-magnetic-field region. A simple but physically
motivated model gives an analytical formula which not only compares well
with but also provides a reasonable explanation for the numerical data. On
the basis of these magnetotransport properties, a method for experimental
determination of the alignment of different components in a vertical electronic
device is proposed.

1. Introduction

The last few years have witnessed extensive efforts to explore quantum interference effects and
ballistic transport in three-dimensional quantum structures. While many researchers studied
lateral structures in which the motion of electrons in a two-dimensional system is confined to
quasi-one-dimensional movement [1], Reed et al [2] studied quantum vertical structures with
three-dimensional (3D) confinement and reported evidence of resonant tunnelling through zero-
dimensional electron states in an AlxGa1−xAs/InyGa1−yAs column containing a double-barrier
structure. Several other experiments [3, 4] on the vertical transport through semiconductor
structures have also been reported. In these experiments, the vertical quantum structures were
realized either by using a ring-shaped gate around a vertical rod that contains the double-barrier
structure in the laterally squeezable region [3] or by using an ion-beam implantation technique
to laterally confine a double-barrier quantum well [4]. In addition to these semiconductor
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structures, vertical ballistic quantum structures were recently realized with metal materials by
using scanning tunnelling microscopy [5, 6] and the junction-breaking technique [7], and by
atomic force microscopy [8].

A vertical quantum structure often consists of a number of components and its transport
properties are largely governed by their configuration. In this paper, we will study how the
configuration of different units in a vertical quantum structure affects the magnetotransport
properties. We will focus on the vertical quantum wire structure with an embedded quantum
dot and show that the system exhibits a clear correlation between the conductance spectra
and the alignment between the embedded quantum dot and quantum wires. In particular,
the conductances of central-axis-aligned and central-axis-misaligned structures exhibit very
distinct characteristics at high magnetic fields: in the perfectly central-axis-aligned structure
the conductance recovers its quantization, while in the central-axis-misaligned structure the
conductance shows the feature of resonant tunnelling. We shall also discuss, on the basis of the
results of this study, an experimental method for the determination of the alignments between
different units of a vertical quantum system.

The rest of the paper is organized as follows. In section 2, we describe our model and the
method of calculation. In section 3, we present and analyse the calculated conductance spectra
and the electron densities for the vertical quantum wire systems with two different alignments.
In section 4, we present a one-dimensional model and use it to deduce an analytical formula for
the magnetoconductance. In section 5, we discuss possible applications of this study. Section 6
contains a summary and conclusions.

2. The model system and the method of calculation

The quantum systems considered in this work are vertical quantum wire structures, each with
an embedded quantum dot, in a longitudinal magnetic field. The quantum wires are assumed
to have square cross section and the embedded quantum dot is assumed to be cubic. The
Hamiltonian of the system for an electron with a magnetic field applied along the z-axis
B = (0, 0, B) is

H = 1

2m∗ (P − eA)2 + U(x, y, z)

= 1

2m∗
[
(Px + eBy/2)2 + (Py − eBx/2)2 + P 2

z

]
+ U(x, y, z) (1)

where m∗ is the electron effective mass, U(x, y, z) is the potential that defines the lateral
electron confinement at z, and A is the vector potential. Here we assume a symmetric gauge
for the magnetic field, i.e., A = (−By/2, Bx/2, 0). If the potential U in equation (1) is
independent of z, the wave function �(r) of the electron at energy E can be expanded in terms
of a complete set of lateral modes:

�(r) =
∑

γ

[
aγ eikγ z + bγ e−ikγ z

]
�γ (x, y) (2)

where γ is the index for the lateral modes, kγ and �γ (x, y) are the longitudinal wavenumber
and the wave function for the γ th mode, respectively. The lateral modes can be expressed in
terms of those for B = 0:

�γ (x, y) =
∑

α

Fαγ φα(x, y) α = (m, n) (3)

φα(x, y) =
√

2

wx

sin mπ(x/wx + 1/2)

√
2

wy

sin nπ(y/wy + 1/2) (4)
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where wx and wy are the lateral dimensions of the cross section. kγ and Fαγ can be obtained
by solving an eigenvalue problem (for details, see the appendix).

In a general case where the potential U depends on z, the problem of the magnetotransport
of the system may be solved by first dividing the structure along the z-direction into a number
of layers, each thin enough to allow us to regard U in it as independent of z, and then using the
scattering-matrix (S-matrix) formalism. The S-matrix has a trivial form inside each layer [9].
We will, therefore, in the following, only give the S-matrices for the interface scattering.

Consider two adjacent layers labelled L and R. The S-matrix at the interface between these
two layers is defined by[

BL

AR

]
= SI

[
AL

BR

]
(5)

where BL and AR are two vectors with elements bL
γ and aR

γ , respectively, while AL and BR are
two vectors with elements aL

γ and bR
γ , respectively. It is simple to show [9] that the interface

S-matrices can be expressed as

SI =




[ −CFL FR

FLKL CTFRKR

]−1 [
CFL −FR

FLKL CTFRKR

]
wL

x,y < wR
x,y[ −FR CFL

CTFRKR FLKL

]−1 [
FR −CFL

CTFRKR FLKL

]
wL

x,y > wR
x,y

(6)

where C is a matrix with elements

Cαβ =
∫ ∫

φL
α (x, y)φR

β (x, y) dx dy. (7)

Also, F a matrix with elements Fαγ , and K a diagonal matrix with elements kγ .
The overall S-matrix of the entire system can be constructed from all of the individual S-

matrices using the composition method [9]. In terms of the overall S-matrix, the conductance
in the linear response regime can be expressed as

G = 2e2

h

∑
γ,γ ′

kγ

kγ ′
|(S21)γ γ ′ |2 (8)

where γ, γ ′ are the indices for propagating modes and S21 is the submatrix of the overall
S-matrix.

The wave functions, and therefore the electron density, can also be calculated from all the
individual S-matrices using the method described in reference [10]. To visualize the electron
density we define the particle existence probability P (r) from the electron density ρ(r):

P (r) =
{

1 ρ(r) > λ max{ρ(r)}
0 otherwise

(9)

where λ is an empirical parameter which is adjusted for the best visual effect. In this paper,
we take λ = 0.1.

3. Magnetoconductance of aligned and misaligned structures

We consider two vertical quantum wire systems as shown schematically in the inset of figure 1
and also that of figure 3—see later. They have different alignments between the quantum
wires and the embedded quantum dot. In the following, they are referred to as the central-
axis-aligned structure and the central-axis-misaligned structure, respectively. In each of the
structures, the quantum wire is assumed to have square cross section, 50 nm × 50 nm, and
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Figure 1. The conductances versus the electron Fermi energy at different magnetic fields for the
central-axis-aligned structure shown schematically in the inset. Different curves which are offset
vertically for clarity correspond to the marked values of the magnetic field.

the embedded cubic quantum dot to have dimension 100 nm. The effective electron mass is
chosen to be 0.067me, which is appropriate for GaAs materials.

Figure 1 shows the calculated conductance of the central-axis-aligned structure as a
function of the electron Fermi energy at several different magnetic fields. At zero magnetic
field, the conductance spectrum exhibits a smooth structure with broadened dips. We note that
the conductance values seen at a Fermi energy larger than 11.2 meV can be higher than the
value corresponding to two conductance quanta (i.e., 2 × 2e2/h). This is due to the second
and third transverse modes being degenerate in the vertical quantum wires. When a magnetic
field is applied, the symmetries of these modes are changed and this degeneracy is lifted. At
the same time, the conductance spectra change dramatically. For instance, we see several
antiresonances on the first conductance plateau at B = 2 T, while at B = 4 T a number of
sharp resonance dips appear on the second conductance plateau but a rather perfect conductance
quantization is found on the first plateau. At B = 6 T, all of the sharp resonance dips seen on
the first plateau at B = 2 T and on the second plateau at B = 4 T have disappeared and the
quantization on these plateaus is recovered. A qualitative feature seen here is therefore that the
conductance spectrum undergoes a transition from that characterized by antiresonance dips at
weak magnetic fields to that characterized by a plateau structure at high magnetic fields.

This feature can be understood with the help of the calculated electron densities. They
are shown in figure 2 with the upper panel for B = 0 and the lower panel for B = 6 T.
As the probability distribution would exhibit a strong energy dependence if the energy was
in the vicinity of the transmission resonance [10], the electron Fermi energy is chosen to be
7.8 meV, far away from any resonances (the position of the nearest resonance at B = 0 is
about 8.1 meV). At this energy, the transmission is 0.62 at B = 0 and 0.99 at B = 6 T.
The oscillatory probability distribution in the incident quantum wire, seen at B = 0, is due
to the interference between the incident wave and the reflected wave which occupy the same
mode in the incident section. This interference effect becomes much more obvious when the
transmission approaches 0.5 at B = 0. It could hardly be seen at B = 6 T because there is
almost no reflected wave at such high magnetic field.
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Figure 2. Visualization of the electron density for the central-axis-aligned structure calculated for
an electron incident at EF = 7.8 meV. The upper panel is for B = 0 T, while the lower panel is
for B = 6 T. The electron wave is incident from the left lead in both panels.

Let us compare the probability distribution inside the embedded quantum dot at zero
magnetic field with that at high magnetic field. At zero magnetic field the probability
distribution could be found in most of the quantum dot while it could be seen only along
the central axis at high magnetic field. This means that a number of quasibound states [11–13]
which have considerable wave amplitudes in the region deviating from the waveguide axis
could be coupled to the incident wave at zero magnetic field. However, only those quasibound
states which have considerable wave amplitudes at the waveguide axis could be coupled to the
incident wave at high magnetic field. As the strong magnetic field compresses the states to
the central axes which have perfect alignment for the quantum wires and the quantum dot, the
incident wave and the states inside the quantum dot are found to be almost perfectly aligned
with each other at high magnetic fields.

It is interesting to note that the conductance spectrum at B = 4 T exhibits plateau structure
in the first-mode region while it shows a number of antiresonances in the second-mode region
(see figure 1). This is because the magnetic field at B = 4 T has very different effects on
the first two modes in the quantum wires. The first mode is so compressed to the central axis
that the electron waves incident in this mode can travel through the embedded quantum dot
with little coupling with the quasibound states, which gives rise to nearly perfect transmission.
However, this magnetic field is not strong enough to completely suppress the coupling between
the second mode and the quasibound states in the quantum dot. As the width of the resonance
in energy is determined by the strength of the coupling between the incident mode and the
quasibound states, the substantially reduced (not vanishing) coupling would give rise to a
number of sharp antiresonances.

The results for the central-axis-misaligned structure are shown in figure 3. It is seen
that the central-axis-misaligned structure and the central-axis-aligned structure have very
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Figure 3. The conductances versus the electron Fermi energy at different magnetic fields for the
central-axis-misaligned structure as shown schematically in the inset. Different curves which are
offset vertically for clarity correspond to the marked values of the magnetic field.

different conductance characteristics. At zero magnetic field, the conductance of the central-
axis-misaligned structure shows more antiresonances. As the magnetic field increases, these
antiresonances gradually disappear and resonance peaks emerge. At even higher magnetic
fields, the resonance peaks are found to dominate the conductance spectrum. A qualitative
feature seen here is therefore that the conductance spectrum of the central-axis-misaligned
structure undergoes a transition from that characterized by a mixture of antiresonances and
resonance peaks at weak magnetic fields to that characterized by only resonance peaks at high
magnetic fields.

In order to understand the characteristics of the magnetoconductance in this structure, we
again calculated the electron density at two selected magnetic fields, B = 0 and B = 4 T.
We show the results in figure 4. We choose 6.06 meV as the electron Fermi energy, which
is just on the third resonances in the conductance spectrum at B = 4 T since this spectrum
does not show any feature other than resonance peaks. At B = 0, the energy is not on any
resonance or antiresonance. As can be seen from the upper panel of figure 4, the incident
wave travels through the embedded quantum dot via coupling with several quasibound states.
The interference pattern is also obvious in the incident portion where the reflected wave has
considerable amplitude. For B = 4 T, the lower panel of figure 4 clearly shows a resonant
state in the quantum dot.

Although the magnetic field compresses the states to their local symmetry axes in both the
central-axis-aligned and the central-axis-misaligned structures, its effects on the conductance
spectra of these two structures are very different. As the different portions of the central-axis-
aligned structure have a common central axis, the magnetic field enhances the alignment
of the electron states in the different portions and, thus, also the possibility of electrons
having straight, direct transmission through the quantum dot. However, in the central-axis-
misaligned structure, the magnetic field compresses the states in different portions to different
central axes and, therefore, suppresses the coupling between the states on either side of the
connection interface. Thus, as the magnetic field increases, the direct electron transmission is
gradually blocked and the electron transport will be dominated by resonant tunnelling through
the localized states in the central quantum dot. This is exactly what we have found in the
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Figure 4. Visualization of the electron density for the central-axis-misaligned structure calculated
for an electron incident at EF = 6.06 meV. The upper panel is for B = 0 T, while the lower panel
is for B = 4 T. The electron wave is incident from the left lead in both panels.

calculations as shown in figure 3, where many resonant peaks are seen in the spectra at B = 4 T
and B = 6 T. In the lower panel of figure 4 (B = 4 T), the characteristic of a resonant state in
the quantum dot can be clearly identified.

4. One-dimensional model

In this section, let us present a one-dimensional model to describe the magnetotransport through
the vertical quantum wires. When there is only one propagating mode involved in the transport,
it is reasonable to adopt the single-mode approximation [14] if the contribution from the
evanescent modes can be neglected. As only one mode is taken into consideration in this
approximation, the problem of three-dimensional transport reduces to a one-dimensional one.

Figure 5 shows a schematic view of this model. The central part denotes the quantum
dot which is embedded in two vertical quantum wires (denoted by the left and right parts). k

and K are the longitudinal wavenumbers of the first transverse modes in the quantum wires
and the quantum dot, respectively; c is the coefficient of coupling between these modes, i.e.,

k kKc c

Figure 5. A schematic view of a one-dimensional model. The central part denotes the quantum
dot which is embedded in two vertical quantum wires (denoted by the left and right parts). k and
K are the longitudinal wavenumbers of the first transverse modes in the quantum wires and the
quantum dot, respectively. c is the coefficient of coupling between these modes.
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c = 〈�wire
1 |�dot

1 〉. It is worth noting that the wavenumbers k and K are dependent on both the
electron Fermi energy and the magnetic field, while the coupling coefficient c is only dependent
on the latter. The total transfer matrix for this model system can be derived as [15]

T =
[

c c

k −k

]−1 [
1 1

cK −cK

] [
e−iKL 0

0 eiKL

] [
1 1

cK −cK

]−1 [
c c

k −k

]
(10)

where L is the length of the quantum dot. The conductance is then given by

G = 2e2

h

∣∣∣∣ 4c2Kk

(c2K + k)2 − ei 2KL(c2K − k)2

∣∣∣∣
2

. (11)

As mentioned in the last section, high magnetic fields would enhance the coupling of
the states in the quantum wires and the quantum dot if they were aligned well with each
other; otherwise, the coupling would be suppressed. For the central-axis-aligned structure, the
coupling coefficient is c = 0.96 at B = 6 T. The result for the conductance calculated from
equation (11) is shown in figure 6 (solid line). Comparison of this result with the numerical
data (see figure 1) shows good agreement.
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Figure 6. The conductances as functions of electron Fermi energy for two vertical quantum wire
structures at B = 6.06 T, calculated from the one-dimensional model as described in the text. The
solid line and dashed–dotted line respectively correspond to the central-axis-aligned structure and
the central-axis-misaligned structure.

For this plateau structure with a smooth transition region, the analytical expression
could be further simplified. The transition region starts from the position where the first
propagating mode begins to open. In this case, the corresponding longitudinal wavelength
is very long, i.e., k is very small and K � k. This allows us to simplify equation (11) as
G ≈ (2e2/h)4k/[1 − exp(i 2KL)]K . Considering that

h̄k =
√

EF − Ewire
1

/
2m∗

and K changes little in this region, the conductance is expected to behave like a square-root
function of the electron Fermi energy in this transition region. This is just what we have found
from both figures 1 and 6. When the energy is further increased, the wavenumber k increases
and approaches K . Taking k ≈ K and c ≈ 1 into consideration, we could reduce equation (11)
to G ≈ (2e2/h)4Kk/(K + k)2 by omitting the term c2K − k in the denominator. As a result,
G will approach 2e2/h when the increased electron Fermi energy suppresses the difference
between the two wavenumbers.

For the central-axis-misaligned structure, the coupling coefficient c is only 0.16 at B = 6 T.
Therefore, the result for the conductance calculated from equation (11), which shows a single
resonant peak (see figure 6), is found to be very different from that for the central-axis-aligned
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structure. The comparison of this result with the numerical data (see figure 3) shows good
agreement, though the resonant peak is found to shift a little. When c is very small, it is
elementary to show that the conductance expressed by equation (11) has its peak value (2e2/h)
when exp(−i 2KL) = 1. The corresponding peak width is proportional to c2.

5. Discussion

To verify that the magnetic-field-induced transitions are not a characteristic only for the
parameters chosen for the numerical calculation, we have checked the results with many
other sets of parameters. For structures with larger quantum dots, it is found that the
transition occurs at a higher magnetic field for the central-axis-aligned structure while it
occurs at a lower magnetic field for the central-axis-misaligned structure. For a central-
axis-aligned structure with smooth connections, it is found that the smooth connections have
little effect on the conductance characteristics. For a central-axis-misaligned structure, when
the length of the smooth connections is 50 nm (the same dimension as that of the quantum
wires), the conductance spectra show very similar characteristics to those of the structure with
abrupt interfaces. When this length increases to 100 nm, the transitions in the conductance
characteristics remain but become somewhat obscured.

Considering the fact that, experimentally, it is more convenient to measure the conductance
as a function of magnetic field rather than electron Fermi energy, we show the calculated
magnetoconductances for the central-axis-aligned structure (upper panel) and the central-axis-
misaligned structure (lower panel) in figure 7. The electron Fermi energy is EF = 10 meV. For
other electron Fermi energies, the basic features observed at this Fermi energy remain. From
the results, it is clearly seen that the magnetoconductance of systems with different alignments
between the quantum wires and the embedded quantum dot exhibit very different behaviours,
especially at high magnetic fields. For a system with good alignment between its components,
the magnetoconductance shows a transition from that characterized by antiresonance dips
at low magnetic fields to that characterized by a smooth structure at high magnetic fields.
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Figure 7. The magnetoconductances for the central-
axis-aligned structure as shown in the inset of figure 1
(upper panel) and the central-axis-misaligned structure
as shown in the inset of figure 3 (lower panel). The
electron Fermi energy is EF = 10 meV.
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For a system with misalignment between its components, the magnetoconductance shows a
transition from that characterized by a mixture of antiresonance dips and tunnelling peaks
in the region of weak magnetic field to that characterized only by tunnelling peaks in the
region of high magnetic field. All of these features can be understood in the same way as was
described earlier.

Finally, we discuss possible applications of this study. As mentioned in the introduction,
electron devices based on nanometre vertical structure are attracting more and more interest.
In such devices, the configuration of the different components may be important to the device
performance. In many cases, an application requires a good alignment between the different
device components [16]. The present study shows that the alignment between different
components in a vertical device could be determined by experimental characterization of the
magnetoconductances. We should mention that the structures considered in the present study
are assumed to be free of any kind of defect. The effect of defects, which is unavoidable in
realistic devices, will be investigated in a future study.

6. Conclusions

In this paper, we have studied the magnetotransport in two vertical quantum wire systems
with different alignments between the quantum wires and their embedded quantum dots.
We have found that the conductance characteristics for the two systems show two different
transitions. For the central-axis-aligned system, the conductance spectra are found to be
dominated by antiresonance dips in low magnetic fields and only by a plateau structure in high
magnetic fields. For the central-axis-misaligned system, the conductance spectra are found
to be dominated by a mixture of antiresonance dips and tunnelling peaks in the weak-field
region and only by resonant tunnelling peaks in the strong-field region. By using the single-
mode approximation, we have obtained the analytical formula for the magnetoconductance,
which compares well with and explains the numerical data. Finally, we have proposed that
this geometric dependence of the conductance characteristics could be used to determine the
alignment of different components in a vertical electron device.

Appendix. Lateral modes in a longitudinal magnetic field

We calculate lateral modes for a vertical quantum wire with a rectangular cross section in a
longitudinal magnetic field by solving the following two-dimensional eigenvalue problem:{

1

2m∗
[
(Px + eBy/2)2 + (Py − eBx/2)2

]
+ U(x, y)

}
�γ (x, y) = Eγ �γ (x, y). (A.1)

On inserting equation (3) into the above equation, this two-dimensional eigenvalue problem
reduces to a matrix eigenvalue problem:∑

α′
Hαα′Fα′γ = Eγ Fαγ α = (m, n) α′ = (m′, n′) (A.2)

Hαα′ = δmm′δnn′
h̄2π2

2m∗

[(
m

wx

)2

+

(
n

wy

)2
]

+ i
2

π2m∗wxwy

eBh̄
[−w2

xI1(n, n′)I2(m, m′) + w2
yI1(m, m′)I2(n, n′)

]

+
1

π3m∗

(
eB

2

)2 [
w2

xδn,n′I3(m, m′) + w2
yδm,m′I3(n, n′)

]
(A.3)
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where

I1(m, m′) =
{

mm′[(−1)m+m′ − 1]/(m2 − m′2) m = m′

0 m = m′

I2(m, m′) =
{

2mm′[(−1)m+m′ − 1]/(m2 − m′2)2 m = m′

0 m = m′

I3(m, m′) =
{

2πmm′[(−1)m+m′
+ 1]/(m2 − m′2)2 m = m′

π3/24 − π/4m2 m = m′.

(A.4)

By solving this matrix eigenvalue problem, we can obtain the eigenvalue Eγ and eigenvector
Fαγ for an electron incident at energy E. The longitudinal wavenumber kγ is simply given by
h̄kγ = √

2m∗(E − Eγ ).
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